
pyconstring Documentation
Release 0.5.0

Bor González-Usach

Sep 21, 2017

Contents

1 Usage 1

2 Rules 3

3 API 5

4 Release Notes 7

Python Module Index 9

i

ii

CHAPTER 1

Usage

Object construction

Constructing a connection string from scratch. As you can see, the case of the keys is converted automatically:

>>> from pyconstring import ConnectionString
>>> cs = ConnectionString()
>>> cs['user'] = 'manuel'
>>> cs['password'] = '1234'
>>> print cs.get_string()
User=manuel;Password=1234;

Note: You can specify your own key formatter by subclassing the ConnectionString class, and overriding the
_format_key method.

Parsing an already existing string:

>>> cs = ConnectionString.from_string('key1=value1;key2=value2;')
>>> cs['key1'] = 'another value'
>>> cs.get_string()
u'Key1=another value;Key2=value2;'
>>> cs['user'] = 'johnny'
>>> print cs.get_string()
Key1=another value;Key2=value2;User=johnny;

Note: By default when parsing a string, if the key Provider appears more than once, the first entry will be pre-
served. You can control which keys are not overridable by subclassing and overwriting _non_overridable_keys

It can be instanciated from iterable:

1

pyconstring Documentation, Release 0.5.0

>>> cs = ConnectionString([('key1', 'value1'), ('key2', 'value2')])
>>> cs['key1']
'value1'
>>> print cs.get_string()
Key1=value1;Key2=value2;

Or directly from another dictionary:

>>> ConnectionString({'key1': 'val1', 'key2': 'val2'})
<ConnectionString 'Key2=val2;Key1=val1;'>

Object manipulation

The ConnectionString is a subclass of OrderedDict and therefore offers the dict API. Some examples of this:

>>> cs = ConnectionString.from_string('key1=value1;key2=value2;')
>>> for key, value in cs.iter():
... print key, value
...
Key1 value1
Key2 value2
>>> 'key1' in cs
True
>>> del cs['key1']
>>> 'key1' in cs
False
>>> list(cs)
[u'Key2']
>>> cs['key3'] = 'hey'
>>> cs2 = ConnectionString.from_string('hello=world;')
>>> cs == cs2
False
>>> cs == cs
True

Check the API for more details.

Key translations made easy. For instance, useful to convert from ADODB parameters to ODBC ones:

>>> cs['Provider'] = 'some provider'
>>> cs['user id'] = 'chanquete'
>>> cs.translate({'provider': 'driver', 'user id': 'uid'})
>>> print cs.get_string()
Driver=some provider;Uid=chanquete;

2 Chapter 1. Usage

CHAPTER 2

Rules

There is not a universal syntax for connection strings, therefore this can’t work for every single possible syntax.
However, there is a set of general rules that keeps the problems at bay, and pyconstring has been implemented following
these generic rules. Those are:

• Keys are not case sensitive

• If a key contains an equal sign, it must be doubled in the connection string. For instance the key key=1 will be
serialized as key==1.

• Surrounding white spaces around the key or value are ignored, unless the value is quoted.

• Quoting of value is necessary when it contains white spaces or semicolons, or it starts with any quote.

• If the value needs to be quoted, it can be quoted with single or double quotes.

• However, if the value needs to be quoted, and it contains the same type quotes, those have to be doubled. If it
contains the other type of quotes, no special handling is needed. value"45 can be serialized as 'value"45'
or "value""45".

• Normally the last appearance of a key in a connection string takes precedence, but there are some exceptions
like Provider, with which the first appearance will take precedence and will not be overridden.

3

pyconstring Documentation, Release 0.5.0

4 Chapter 2. Rules

CHAPTER 3

API

The ConnectionString class has the same API as standard dictionary, plus the following methods:

class pyconstring.pyconstring.ConnectionString(*args, **kwargs)
Bases: collections.OrderedDict

classmethod from_string(string)
Creates a new instance and loads the passed string

Parameters string (unicode) – connection string to be parsed

Return type ConnectionString

get_string()

Returns the composed connection string

Return type unicode

translate(trans, strict=True)
Translates the keys of the store.

Parameters

• trans (dict) – translation mapping {pre name: post name}

• strict (bool) – When strict, the existing keys in self that are not in trans will be
removed. If not strict, they will still exist.

5

pyconstring Documentation, Release 0.5.0

6 Chapter 3. API

CHAPTER 4

Release Notes

New in 0.5.0

• Now the ConnectionString class inherits from OrderedDict, and therefore the code has been substantially sim-
plified. The only change in the API is that the class methods from_iterable and from_dict have been
removed. Now you can just instantiate the class passing the iterable or the dict to the main constructor.

7

pyconstring Documentation, Release 0.5.0

8 Chapter 4. Release Notes

Python Module Index

p
pyconstring.pyconstring, 5

9

pyconstring Documentation, Release 0.5.0

10 Python Module Index

Index

C
ConnectionString (class in pyconstring.pyconstring), 5

F
from_string() (pyconstring.pyconstring.ConnectionString

class method), 5

G
get_string() (pyconstring.pyconstring.ConnectionString

method), 5

P
pyconstring.pyconstring (module), 5

T
translate() (pyconstring.pyconstring.ConnectionString

method), 5

11

	Usage
	Rules
	API
	Release Notes
	Python Module Index

